Publications

What is a Publication?
74 Publications visible to you, out of a total of 74

Abstract (Expand)

Central nervous system (CNS) injury results in chronic scar formation that interferes with function and inhibits repair. Extracellular matrix (ECM) is prominent in the scar and potently regulates cell behavior. However, comprehensive information about the ECM proteome is largely lacking, and region- as well as injury-specific differences are often not taken into account. These aspects are the focus of our perspective on injury and scar formation. To highlight the importance of such comprehensive proteome analysis we include data obtained with novel analysis tools of the ECM composition in the scar and show the contribution of monocytes to the ECM composition after traumatic brain injury (TBI). Monocyte invasion was reduced using the CCR2-/- mouse line and step-wise de-cellularization and proteomics allowed determining monocyte-dependent ECM composition and architecture of the glial scar. We find significant reduction in the ECM proteins Tgm1, Itih (1,2, and 3), and Ftl in the absence of monocyte invasion. We also describe the scar ECM comprising zones with distinctive composition and show a subacute signature upon comparison to proteome obtained at earlier times after TBI. These results are discussed in light of injury-, region- and time-specific regulation of scar formation highlighting the urgent need to differentiate injury conditions and CNS-regions using comprehensive ECM analysis.

Authors: Jacob Kjell, Magdalena Götz

Date Published: 20th Feb 2020

Publication Type: Journal

Abstract (Expand)

The mammalian brain contains few niches for neural stem cells (NSCs) capable of generating new neurons, whereas other regions are primarily gliogenic. Here we leverage the spatial separation of the sub-ependymal zone NSC niche and the olfactory bulb, the region to which newly generated neurons from the sub-ependymal zone migrate and integrate, and present a comprehensive proteomic characterization of these regions in comparison to the cerebral cortex, which is not conducive to neurogenesis and integration of new neurons. We find differing compositions of regulatory extracellular matrix (ECM) components in the neurogenic niche. We further show that quiescent NSCs are the main source of their local ECM, including the multi-functional enzyme transglutaminase 2, which we show is crucial for neurogenesis. Atomic force microscopy corroborated indications from the proteomic analyses that neurogenic niches are significantly stiffer than non-neurogenic parenchyma. Together these findings provide a powerful resource for unraveling unique compositions of neurogenic niches.

Authors: Jacob Kjell, Judith Fischer-Sternjak, Amelia J Thompson, Christian Friess, Matthew J Sticco, Favio Salinas, Jürgen Cox, David C Martinelli, Jovica Ninkovic, Kristian Franze, Herbert B Schiller, Magdalena Götz

Date Published: 6th Feb 2020

Publication Type: Journal

Abstract (Expand)

The autophagic clearance of damaged lysosomes by lysophagy involves extensive modification of the organelle with ubiquitin, but the underlying ubiquitination machinery is still poorly characterized. Here, we use an siRNA screening approach and identify human UBE2QL1 as a major regulator of lysosomal ubiquitination, lysophagy, and cell survival after lysosomal damage. UBE2QL1 translocates to permeabilized lysosomes where it associates with damage sensors, ubiquitination targets, and lysophagy effectors. UBE2QL1 knockdown reduces ubiquitination and accumulation of the critical autophagy receptor p62 and abrogates recruitment of the AAA-ATPase VCP/p97, which is essential for efficient lysophagy. Crucially, it affects association of LC3B with damaged lysosomes indicating that autophagosome formation was impaired. Already in unchallenged cells, depletion of UBE2QL1 leads to increased lysosomal damage, mTOR dissociation from lysosomes, and TFEB activation pointing to a role in lysosomal homeostasis. In line with this, mutation of the homologue ubc-25 in Caenorhabditis elegans exacerbates lysosome permeability in worms lacking the lysosome stabilizing protein SCAV-3/LIMP2. Thus, UBE2QL1 coordinates critical steps in the acute endolysosomal damage response and is essential for maintenance of lysosomal integrity.

Authors: Lisa Koerver, Chrisovalantis Papadopoulos, Bin Liu, Bojana Kravic, Giulia Rota, Lukas Brecht, Tineke Veenendaal, Mira Polajnar, Anika Bluemke, Michael Ehrmann, Judith Klumperman, Marja Jäättelä, Christian Behrends, Hemmo Meyer

Date Published: 4th Oct 2019

Publication Type: Journal

Abstract (Expand)

Mitochondria vary in morphology and function in different tissues; however, little is known about their molecular diversity among cell types. Here we engineered MitoTag mice, which express a Cre recombinase-dependent green fluorescent protein targeted to the outer mitochondrial membrane, and developed an isolation approach to profile tagged mitochondria from defined cell types. We determined the mitochondrial proteome of the three major cerebellar cell types (Purkinje cells, granule cells and astrocytes) and identified hundreds of mitochondrial proteins that are differentially regulated. Thus, we provide markers of cell-type-specific mitochondria for the healthy and diseased mouse and human central nervous systems, including in amyotrophic lateral sclerosis and Alzheimer's disease. Based on proteomic predictions, we demonstrate that astrocytic mitochondria metabolize long-chain fatty acids more efficiently than neuronal mitochondria. We also characterize cell-type differences in mitochondrial calcium buffering via the mitochondrial calcium uniporter (Mcu) and identify regulator of microtubule dynamics protein 3 (Rmdn3) as a determinant of endoplasmic reticulum-mitochondria proximity in Purkinje cells. Our approach enables exploring mitochondrial diversity in many in vivo contexts.

Authors: C. Fecher, L. Trovo, S. A. Muller, N. Snaidero, J. Wettmarshausen, S. Heink, O. Ortiz, I. Wagner, R. Kuhn, J. Hartmann, R. M. Karl, A. Konnerth, T. Korn, W. Wurst, D. Merkler, S. F. Lichtenthaler, F. Perocchi, T. Misgeld

Date Published: 11th Sep 2019

Publication Type: Journal

Abstract (Expand)

Chaperone-assisted selective autophagy (CASA) initiated by the cochaperone Bcl2-associated athanogene 3 (BAG3) represents an important mechanism for the disposal of misfolded and damaged proteins in mammalian cells. Under mechanical stress, the cochaperone cooperates with the small heat shock protein HSPB8 and the cytoskeleton-associated protein SYNPO2 to degrade force-unfolded forms of the actin-crosslinking protein filamin. This is essential for muscle maintenance in flies, fish, mice and men. Here, we identify the serine/threonine protein kinase 38 (STK38), which is part of the Hippo signaling network, as a novel interactor of BAG3. STK38 was previously shown to facilitate cytoskeleton assembly and to promote mitophagy as well as starvation and detachment induced autophagy. Significantly, our study reveals that STK38 exerts an inhibitory activity on BAG3-mediated autophagy. Inhibition relies on a disruption of the functional interplay of BAG3 with HSPB8 and SYNPO2 upon binding of STK38 to the cochaperone. Of note, STK38 attenuates CASA independently of its kinase activity, whereas previously established regulatory functions of STK38 involve target phosphorylation. The ability to exert different modes of regulation on central protein homeostasis (proteostasis) machineries apparently allows STK38 to coordinate the execution of diverse macroautophagy pathways and to balance cytoskeleton assembly and degradation.

Authors: C. Klimek, R. Jahnke, J. Wordehoff, B. Kathage, D. Stadel, C. Behrends, A. Hergovich, J. Hohfeld

Date Published: 22nd Jul 2019

Publication Type: Journal

Abstract (Expand)

The human lysosomal polypeptide ABC transporter TAPL (ABC subfamily B member 9, ABCB9) transports 6-59-amino-acid-long polypeptides from the cytosol into lysosomes. The subcellular localization of TAPL depends solely on its N-terminal transmembrane domain, TMD0, which lacks conventional targeting sequences. However, the intracellular route and the molecular mechanisms that control TAPL localization remain unclear. Here, we delineated the route of TAPL to lysosomes and investigated the determinants of single trafficking steps. By synchronizing trafficking events by a retention using selective hooks (RUSH) assay and visualizing individual intermediate steps through immunostaining and confocal microscopy, we demonstrate that TAPL takes the direct route to lysosomes. We further identified conserved charged residues within TMD0 transmembrane helices that are essential for individual steps of lysosomal targeting. Substitutions of these residues retained TAPL in the endoplasmic reticulum (ER) or Golgi. We also observed that for release from the ER, a salt bridge between Asp-17 and Arg-57 is essential. An interactome analysis revealed that Yip1-interacting factor homolog B membrane-trafficking protein (YIF1B) interacts with TAPL. We also found that YIF1B is involved in ER-to-Golgi trafficking and interacts with TMD0 of TAPL via its transmembrane domain and that this interaction strongly depends on the newly identified salt bridge within TMD0. These results expand our knowledge about lysosomal trafficking of TAPL and the general function of extra transmembrane domains of ABC transporters.

Authors: P. Graab, C. Bock, K. Weiss, A. Hirth, N. Koller, M. Braner, J. Jung, F. Loehr, R. Tampe, C. Behrends, R. Abele

Date Published: 3rd May 2019

Publication Type: Journal

Abstract (Expand)

The metalloprotease ADAM10 is a drug target in Alzheimer's disease, where it cleaves the amyloid precursor protein (APP) and lowers amyloid-beta. Yet, ADAM10 has additional substrates, which may cause mechanism-based side effects upon therapeutic ADAM10 activation. However, they may also serve-in addition to APP-as biomarkers to monitor ADAM10 activity in patients and to develop APP-selective ADAM10 activators. Our study demonstrates that one such substrate is the neuronal cell adhesion protein NrCAM ADAM10 controlled NrCAM surface levels and regulated neurite outgrowth in vitro in an NrCAM-dependent manner. However, ADAM10 cleavage of NrCAM, in contrast to APP, was not stimulated by the ADAM10 activator acitretin, suggesting that substrate-selective ADAM10 activation may be feasible. Indeed, a whole proteome analysis of human CSF from a phase II clinical trial showed that acitretin, which enhanced APP cleavage by ADAM10, spared most other ADAM10 substrates in brain, including NrCAM Taken together, this study demonstrates an NrCAM-dependent function for ADAM10 in neurite outgrowth and reveals that a substrate-selective, therapeutic ADAM10 activation is possible and may be monitored with NrCAM.

Authors: T. Brummer, S. A. Muller, F. Pan-Montojo, F. Yoshida, A. Fellgiebel, T. Tomita, K. Endres, S. F. Lichtenthaler

Date Published: 6th Mar 2019

Publication Type: Journal

Powered by
(v.1.15.0)
Copyright © 2008 - 2024 The University of Manchester and HITS gGmbH