Publications

What is a Publication?
52 Publications visible to you, out of a total of 52

Abstract (Expand)

Amyloid-like aggregates of the microtubule-associated protein Tau are associated with several neurodegenerative disorders including Alzheimer's disease. The existence of cellular machinery for the removal of such aggregates has remained unclear, as specialized disaggregase chaperones are thought to be absent in mammalian cells. Here we show in cell culture and in neurons that the hexameric ATPase valosin-containing protein (VCP) is recruited to ubiquitylated Tau fibrils, resulting in their efficient disaggregation. Aggregate clearance depends on the functional cooperation of VCP with heat shock 70 kDa protein (Hsp70) and the ubiquitin-proteasome machinery. While inhibition of VCP activity stabilizes large Tau aggregates, disaggregation by VCP generates seeding-active Tau species as byproduct. These findings identify VCP as a core component of the machinery for the removal of neurodegenerative disease aggregates and suggest that its activity can be associated with enhanced aggregate spreading in tauopathies.

Authors: Itika Saha, Patricia Yuste-Checa, Miguel Da Silva Padilha, Qiang Guo, Roman Körner, Hauke Holthusen, Victoria A Trinkaus, Irina Dudanova, Rubén Fernández-Busnadiego, Wolfgang Baumeister, David W Sanders, Saurabh Gautam, Marc I Diamond, F Ulrich Hartl, Mark S Hipp

Date Published: 2nd Feb 2023

Publication Type: Journal

Abstract (Expand)

The complexity of signaling events and cellular responses unfolding in neuronal, glial, and immune cells upon traumatic brain injury (TBI) constitutes an obstacle in elucidating pathophysiological links and targets for intervention. We use array phosphoproteomics in a murine mild blunt TBI to reconstruct the temporal dynamics of tyrosine-kinase signaling in TBI and then scrutinize the large-scale effects of perturbation of Met/HGFR, VEGFR1, and Btk signaling by small molecules. We show Met/HGFR as a selective modifier of early microglial response and that Met/HGFR blockade prevents the induction of microglial inflammatory mediators, of reactive microglia morphology, and TBI-associated responses in neurons and vasculature. Both acute and prolonged Met/HGFR inhibition ameliorate neuronal survival and motor recovery. Early elevation of HGF itself in the cerebrospinal fluid of TBI patients suggests that this mechanism has translational value in human subjects. Our findings identify Met/HGFR as a modulator of early neuroinflammation in TBI with promising translational potential.

Authors: Rida Rehman, Michael Miller, Sruthi Sankari Krishnamurthy, Jacob Kjell, Lobna Elsayed, Stefanie M Hauck, Florian Olde Heuvel, Alison Conquest, Akila Chandrasekar, Albert Ludolph, Tobias Boeckers, Medhanie A Mulaw, Maria Cristina Morganti-Kossmann, Aya Takeoka, Francesco Roselli, Magdalena Götz

Date Published: 27th Dec 2022

Publication Type: Journal

Abstract (Expand)

For optimal design of anti-amyloid-β (Aβ) and anti-tau clinical trials, we need to better understand the pathophysiological cascade of Aβ- and tau-related processes. Therefore, we set out to investigate how Aβ and soluble phosphorylated tau (p-tau) relate to the accumulation of tau aggregates assessed with PET and subsequent cognitive decline across the Alzheimer's disease (AD) continuum. Using human cross-sectional and longitudinal neuroimaging and cognitive assessment data, we show that in early stages of AD, increased concentration of soluble CSF p-tau is strongly associated with accumulation of insoluble tau aggregates across the brain, and CSF p-tau levels mediate the effect of Aβ on tau aggregation. Further, higher soluble p-tau concentrations are mainly related to faster accumulation of tau aggregates in the regions with strong functional connectivity to individual tau epicenters. In this early stage, higher soluble p-tau concentrations is associated with cognitive decline, which is mediated by faster increase of tau aggregates. In contrast, in AD dementia, when Aβ fibrils and soluble p-tau levels have plateaued, cognitive decline is related to the accumulation rate of insoluble tau aggregates. Our data suggest that therapeutic approaches reducing soluble p-tau levels might be most favorable in early AD, before widespread insoluble tau aggregates.

Authors: Alexa Pichet Binette, Nicolai Franzmeier, Nicola Spotorno, Michael Ewers, Matthias Brendel, Davina Biel, Olof Strandberg, Shorena Janelidze, Sebastian Palmqvist, Niklas Mattsson-Carlgren, Ruben Smith, Erik Stomrud, Rik Ossenkoppele, Oskar Hansson

Date Published: 4th Nov 2022

Publication Type: Journal

Abstract

Not specified

Authors: Yaw Asare, Margarita Shnipova, Luka Živković, Christina Schlegl, Federica Tosato, Arailym Aronova, Markus Brandhofer, Laura Strohm, Nathalie Beaufort, Rainer Malik, Christian Weber, Jürgen Bernhagen, Martin Dichgans

Date Published: 19th Oct 2022

Publication Type: Journal

Abstract (Expand)

Hypothalamic astrocytes are particularly affected by energy-dense food consumption. How the anatomical location of these glial cells and their spatial molecular distribution in the arcuate nucleus of the hypothalamus (ARC) determine the cellular response to a high caloric diet remains unclear. In this study, we investigated their distinctive molecular responses following exposure to a high-fat high-sugar (HFHS) diet, specifically in the ARC. Using RNA sequencing and proteomics, we showed that astrocytes have a distinct transcriptomic and proteomic profile dependent on their anatomical location, with a major proteomic reprogramming in hypothalamic astrocytes. By ARC single-cell sequencing, we observed that a HFHS diet dictates time- and cell- specific transcriptomic responses, revealing that astrocytes have the most distinct regulatory pattern compared to other cell types. Lastly, we topographically and molecularly characterized astrocytes expressing glial fibrillary acidic protein and/or aldehyde dehydrogenase 1 family member L1 in the ARC, of which the abundance was significantly increased, as well as the alteration in their spatial and molecular profiles, with a HFHS diet. Together, our results provide a detailed multi-omics view on the spatial and temporal changes of astrocytes particularly in the ARC during different time points of adaptation to a high calorie diet.

Authors: Luiza Maria Lutomska, Viktorian Miok, Natalie Krahmer, Ismael González García, Tim Gruber, Ophélia Le Thuc, Cahuê Db Murat, Beata Legutko, Michael Sterr, Gesine Saher, Heiko Lickert, Timo D Müller, Siegfried Ussar, Matthias H Tschöp, Dominik Lutter, Cristina Garcia-Caceres

Date Published: 8th Jul 2022

Publication Type: Journal

Abstract (Expand)

The centrosome provides an intracellular anchor for the cytoskeleton, regulating cell division, cell migration, and cilia formation. We used spatial proteomics to elucidate protein interaction networks at the centrosome of human induced pluripotent stem cell-derived neural stem cells (NSCs) and neurons. Centrosome-associated proteins were largely cell type-specific, with protein hubs involved in RNA dynamics. Analysis of neurodevelopmental disease cohorts identified a significant overrepresentation of NSC centrosome proteins with variants in patients with periventricular heterotopia (PH). Expressing the PH-associated mutant pre-mRNA-processing factor 6 (PRPF6) reproduced the periventricular misplacement in the developing mouse brain, highlighting missplicing of transcripts of a microtubule-associated kinase with centrosomal location as essential for the phenotype. Collectively, cell type-specific centrosome interactomes explain how genetic variants in ubiquitous proteins may convey brain-specific phenotypes.

Authors: Adam C O'Neill, Fatma Uzbas, Giulia Antognolli, Florencia Merino, Kalina Draganova, Alex Jäck, Sirui Zhang, Giorgia Pedini, Julia P Schessner, Kimberly Cramer, Aloys Schepers, Fabian Metzger, Miriam Esgleas, Pawel Smialowski, Renzo Guerrini, Sven Falk, Regina Feederle, Saskia Freytag, Zefeng Wang, Melanie Bahlo, Ralf Jungmann, Claudia Bagni, Georg H H Borner, Stephen P Robertson, Stefanie M Hauck, Magdalena Götz

Date Published: 17th Jun 2022

Publication Type: Journal

Abstract (Expand)

Cell transplantation is a promising approach for the reconstruction of neuronal circuits after brain damage. Transplanted neurons integrate with remarkable specificity into circuitries of the mouse cerebral cortex affected by neuronal ablation. However, it remains unclear how neurons perform in a local environment undergoing reactive gliosis, inflammation, macrophage infiltration, and scar formation, as in traumatic brain injury (TBI). To elucidate this, we transplanted cells from the embryonic mouse cerebral cortex into TBI-injured, inflamed-only, or intact cortex of adult mice. Brain-wide quantitative monosynaptic rabies virus (RABV) tracing unraveled graft inputs from correct regions across the brain in all conditions, with pronounced quantitative differences: scarce in intact and inflamed brain versus exuberant after TBI. In the latter, the initial overshoot is followed by pruning, with only a few input neurons persisting at 3 months. Proteomic profiling identifies candidate molecules for regulation of the synaptic yield, a pivotal parameter to tailor for functional restoration of neuronal circuits.

Authors: Sofia Grade, Judith Thomas, Yvette Zarb, Manja Thorwirth, Karl-Klaus Conzelmann, Stefanie M Hauck, Magdalena Götz

Date Published: 10th Jun 2022

Publication Type: Journal

Powered by
(v.1.15.0)
Copyright © 2008 - 2024 The University of Manchester and HITS gGmbH