Publications

What is a Publication?
4 Publications matching the given criteria: (Clear all filters)
Published year: 20214

Abstract (Expand)

After demyelinating injury of the central nervous system, resolution of the mounting acute inflammation is crucial for the initiation of a regenerative response. Here, we aim to identify fatty acids and lipid mediators that govern the balance of inflammatory reactions within demyelinating lesions. Using lipidomics, we identify bioactive lipids in the resolution phase of inflammation with markedly elevated levels of n-3 polyunsaturated fatty acids. Using fat-1 transgenic mice, which convert n-6 fatty acids to n-3 fatty acids, we find that reduction of the n-6/n-3 ratio decreases the phagocytic infiltrate. In addition, we observe accelerated decline of microglia/macrophages and enhanced generation of oligodendrocytes in aged mice when n-3 fatty acids are shuttled to the brain. Thus, n-3 fatty acids enhance lesion recovery and may, therefore, provide the basis for pro-regenerative medicines of demyelinating diseases in the central nervous system.

Authors: H. Penkert, A. Bertrand, V. Tiwari, S. Breimann, S. A. Muller, P. M. Jordan, M. J. Gerl, C. Klose, L. Cantuti-Castelvetri, M. Bosch-Queralt, I. Levental, S. F. Lichtenthaler, O. Werz, M. Simons

Date Published: 26th Oct 2021

Publication Type: Journal

Abstract (Expand)

Proteolytic ectodomain shedding of membrane proteins is a fundamental mechanism to control the communication between cells and their environment. A key protease for membrane protein shedding is ADAM17, which requires a non-proteolytic subunit, either inactive Rhomboid 1 (iRhom1) or iRhom2 for its activity. While iRhom1 and iRhom2 are co-expressed in most tissues and appear to have largely redundant functions, the brain is an organ with predominant expression of iRhom1. Yet, little is known about the spatio-temporal expression of iRhom1 in mammalian brain and about its function in controlling membrane protein shedding in the nervous system. Here, we demonstrate that iRhom1 is expressed in mouse brain from the prenatal stage to adulthood with a peak in early postnatal development. In the adult mouse brain iRhom1 was widely expressed, including in cortex, hippocampus, olfactory bulb, and cerebellum. Proteomic analysis of the secretome of primary neurons using the hiSPECS method and of cerebrospinal fluid, obtained from iRhom1-deficient and control mice, identified several membrane proteins that require iRhom1 for their shedding in vitro or in vivo. One of these proteins was 'multiple-EGF-like-domains protein 10' (MEGF10), a phagocytic receptor in the brain that is linked to the removal of amyloid beta and apoptotic neurons. MEGF10 was further validated as an ADAM17 substrate using ADAM17-deficient mouse embryonic fibroblasts. Taken together, this study discovers a role for iRhom1 in controlling membrane protein shedding in the mouse brain, establishes MEGF10 as an iRhom1-dependent ADAM17 substrate and demonstrates that iRhom1 is widely expressed in murine brain.

Authors: J. Tushaus, S. A. Muller, J. Shrouder, M. Arends, M. Simons, N. Plesnila, C. P. Blobel, S. F. Lichtenthaler

Date Published: 6th Oct 2021

Publication Type: Journal

Abstract (Expand)

Aging results in gray and white matter degeneration, but the specific microglial responses are unknown. Using single-cell RNA sequencing from white and gray matter separately, we identified white matter-associated microglia (WAMs), which share parts of the disease-associated microglia (DAM) gene signature and are characterized by activation of genes implicated in phagocytic activity and lipid metabolism. WAMs depend on triggering receptor expressed on myeloid cells 2 (TREM2) signaling and are aging dependent. In the aged brain, WAMs form independent of apolipoprotein E (APOE), in contrast to mouse models of Alzheimer's disease, in which microglia with the WAM gene signature are generated prematurely and in an APOE-dependent pathway similar to DAMs. Within the white matter, microglia frequently cluster in nodules, where they are engaged in clearing degenerated myelin. Thus, WAMs may represent a potentially protective response required to clear degenerated myelin accumulating during white matter aging and disease.

Authors: S. Safaiyan, S. Besson-Girard, T. Kaya, L. Cantuti-Castelvetri, L. Liu, H. Ji, M. Schifferer, G. Gouna, F. Usifo, N. Kannaiyan, D. Fitzner, X. Xiang, M. J. Rossner, M. Brendel, O. Gokce, M. Simons

Date Published: 7th Apr 2021

Publication Type: Journal

Abstract (Expand)

Niemann-Pick type C disease is a rare neurodegenerative disorder mainly caused by mutations in NPC1, resulting in abnormal late endosomal/lysosomal lipid storage. Although microgliosis is a prominent pathological feature, direct consequences of NPC1 loss on microglial function remain not fully characterized. We discovered pathological proteomic signatures and phenotypes in NPC1-deficient murine models and demonstrate a cell autonomous function of NPC1 in microglia. Loss of NPC1 triggers enhanced phagocytic uptake and impaired myelin turnover in microglia that precede neuronal death. Npc1(-/-) microglia feature a striking accumulation of multivesicular bodies and impaired trafficking of lipids to lysosomes while lysosomal degradation function remains preserved. Molecular and functional defects were also detected in blood-derived macrophages of NPC patients that provide a potential tool for monitoring disease. Our study underscores an essential cell autonomous role for NPC1 in immune cells and implies microglial therapeutic potential.

Authors: A. Colombo, L. Dinkel, S. A. Muller, L. Sebastian Monasor, M. Schifferer, L. Cantuti-Castelvetri, J. Konig, L. Vidatic, T. Bremova-Ertl, A. P. Lieberman, S. Hecimovic, M. Simons, S. F. Lichtenthaler, M. Strupp, S. A. Schneider, S. Tahirovic

Date Published: 24th Feb 2021

Publication Type: Journal

Powered by
(v.1.15.0)
Copyright © 2008 - 2024 The University of Manchester and HITS gGmbH