Publications

What is a Publication?
2 Publications matching the given criteria: (Clear all filters)
Author: Wolfgang Wurst2

Abstract (Expand)

Direct reprogramming based on genetic factors resembles a promising strategy to replace lost cells in degenerative diseases such as Parkinson's disease. For this, we developed a knock-in mouse line carrying a dual dCas9 transactivator system (dCAM) allowing the conditional in vivo activation of endogenous genes. To enable a translational application, we additionally established an AAV-based strategy carrying intein-split-dCas9 in combination with activators (AAV-dCAS). Both approaches were successful in reprogramming striatal astrocytes into induced GABAergic neurons confirmed by single-cell transcriptome analysis of reprogrammed neurons in vivo. These GABAergic neurons functionally integrate into striatal circuits, alleviating voluntary motor behavior aspects in a 6-OHDA Parkinson's disease model. Our results suggest a novel intervention strategy beyond the restoration of dopamine levels. Thus, the AAV-dCAS approach might enable an alternative route for clinical therapies of Parkinson's disease.

Authors: Jessica Giehrl-Schwab, Florian Giesert, Benedict Rauser, Chu Lan Lao, Sina Hembach, Sandrine Lefort, Ignacio L Ibarra, Christina Koupourtidou, Malte Daniel Luecken, Dong-Jiunn Jeffery Truong, Judith Fischer-Sternjak, Giacomo Masserdotti, Nilima Prakash, Jovica Ninkovic, Sabine M Hölter, Daniela M Vogt Weisenhorn, Fabian J Theis, Magdalena Götz, Wolfgang Wurst

Date Published: 9th May 2022

Publication Type: Journal

Abstract (Expand)

The oligodendrocyte progenitors (OPCs) are at the front of the glial reaction to the traumatic brain injury. However, regulatory pathways steering the OPC reaction as well as the role of reactive OPCs remain largely unknown. Here, we compared a long-lasting, exacerbated reaction of OPCs to the adult zebrafish brain injury with a timely restricted OPC activation to identify the specific molecular mechanisms regulating OPC reactivity and their contribution to regeneration. We demonstrated that the influx of the cerebrospinal fluid into the brain parenchyma after injury simultaneously activates the toll-like receptor 2 (Tlr2) and the chemokine receptor 3 (Cxcr3) innate immunity pathways, leading to increased OPC proliferation and thereby exacerbated glial reactivity. These pathways were critical for long-lasting OPC accumulation even after the ablation of microglia and infiltrating monocytes. Importantly, interference with the Tlr1/2 and Cxcr3 pathways after injury alleviated reactive gliosis, increased new neuron recruitment, and improved tissue restoration.

Authors: Rosario Sanchez-Gonzalez, Christina Koupourtidou, Tjasa Lepko, Alessandro Zambusi, Klara Tereza Novoselc, Tamara Durovic, Sven Aschenbroich, Veronika Schwarz, Christopher T Breunig, Hans Straka, Hagen B Huttner, Martin Irmler, Johannes Beckers, Wolfgang Wurst, Andreas Zwergal, Tamas Schauer, Tobias Straub, Tim Czopka, Dietrich Trümbach, Magdalena Götz, Stefan H Stricker, Jovica Ninkovic

Date Published: 2nd Feb 2022

Publication Type: Journal

Powered by
(v.1.15.0)
Copyright © 2008 - 2024 The University of Manchester and HITS gGmbH