Publications

What is a Publication?
3 Publications matching the given criteria: (Clear all filters)
Published year: 20213

Abstract (Expand)

The ascorbate peroxidase APEX2 is commonly used to study the neighborhood of a protein of interest by proximity-dependent biotinylation. Here, we describe a protocol for sample processing compatible with immunoblotting and mass spectrometry, suitable to specifically map the content of autophagosomes and potentially other short-lived endomembrane transport vesicles without the need of subcellular fractionation. By combining live-cell biotinylation with proteinase K digestion of cell homogenates, proteins enriched in membrane-protected compartments can be readily enriched and identified. For complete details on the use and execution of this protocol, please refer to Zellner et al. (2021).

Authors: S. Zellner, K. Nalbach, C. Behrends

Date Published: 18th Jun 2021

Publication Type: Journal

Abstract (Expand)

The sequestration of damaged mitochondria within double-membrane structures termed autophagosomes is a key step of PINK1/Parkin mitophagy. The ATG4 family of proteases are thought to regulate autophagosome formation exclusively by processing the ubiquitin-like ATG8 family (LC3/GABARAPs). We discover that human ATG4s promote autophagosome formation independently of their protease activity and of ATG8 family processing. ATG4 proximity networks reveal a role for ATG4s and their proximity partners, including the immune-disease protein LRBA, in ATG9A vesicle trafficking to mitochondria. Artificial intelligence-directed 3D electron microscopy of phagophores shows that ATG4s promote phagophore-ER contacts during the lipid-transfer phase of autophagosome formation. We also show that ATG8 removal during autophagosome maturation does not depend on ATG4 activity. Instead, ATG4s can disassemble ATG8-protein conjugates, revealing a role for ATG4s as deubiquitinating-like enzymes. These findings establish non-canonical roles of the ATG4 family beyond the ATG8 lipidation axis and provide an AI-driven framework for rapid 3D electron microscopy.

Authors: T. N. Nguyen, B. S. Padman, S. Zellner, G. Khuu, L. Uoselis, W. K. Lam, M. Skulsuppaisarn, R. S. J. Lindblom, E. M. Watts, C. Behrends, M. Lazarou

Date Published: 6th May 2021

Publication Type: Journal

Abstract (Expand)

Autophagy deficiency in fed conditions leads to the formation of protein inclusions highlighting the contribution of this lysosomal delivery route to cellular proteostasis. Selective autophagy pathways exist that clear accumulated and aggregated ubiquitinated proteins. Receptors for this type of autophagy (aggrephagy) include p62, NBR1, TOLLIP, and OPTN, which possess LC3-interacting regions and ubiquitin-binding domains (UBDs), thus working as a bridge between LC3/GABARAP proteins and ubiquitinated substrates. However, the identity of aggrephagy substrates and the redundancy of aggrephagy and related UBD-containing receptors remains elusive. Here, we combined proximity labeling and organelle enrichment with quantitative proteomics to systematically map the autophagic degradome targeted by UBD-containing receptors under basal and proteostasis-challenging conditions in human cell lines. We identified various autophagy substrates, some of which were differentially engulfed by autophagosomal and endosomal membranes via p62 and TOLLIP, respectively. Overall, this resource will allow dissection of the proteostasis contribution of autophagy to numerous individual proteins.

Authors: Susanne Zellner, Martina Schifferer, Christian Behrends

Date Published: 18th Mar 2021

Publication Type: Journal

Powered by
(v.1.15.0)
Copyright © 2008 - 2024 The University of Manchester and HITS gGmbH