Publications

What is a Publication?
104 Publications visible to you, out of a total of 104

Abstract (Expand)

Hereditary sensory and autonomic neuropathy 9 (HSAN9) is a rare fatal neurological disease caused by mis- and nonsense mutations in the gene encoding for Tectonin beta-propeller repeat containing protein 2 (TECPR2). While TECPR2 is required for lysosomal consumption of autophagosomes and ER-to-Golgi transport, it remains elusive how exactly TECPR2 is involved in autophagy and secretion and what downstream sequels arise from defective TECPR2 due to its involvement in these processes. To address these questions, we determine molecular consequences of TECPR2 deficiency along the secretory pathway. By employing spatial proteomics, we describe pronounced changes with numerous proteins important for neuronal function being affected in their intracellular transport. Moreover, we provide evidence that TECPR2's interaction with the early secretory pathway is not restricted to COPII carriers. Collectively, our systematic profiling of a HSAN9 cell model points to specific trafficking and sorting defects which might precede autophagy dysfunction upon TECPR2 deficiency.

Authors: K. Nalbach, M. Schifferer, D. Bhattacharya, H. Ho-Xuan, W. C. Tseng, L. A. Williams, A. Stolz, S. F. Lichtenthaler, Z. Elazar, C. Behrends

Date Published: 16th Feb 2023

Publication Type: Journal

Abstract (Expand)

Amyloid-like aggregates of the microtubule-associated protein Tau are associated with several neurodegenerative disorders including Alzheimer's disease. The existence of cellular machinery for the removal of such aggregates has remained unclear, as specialized disaggregase chaperones are thought to be absent in mammalian cells. Here we show in cell culture and in neurons that the hexameric ATPase valosin-containing protein (VCP) is recruited to ubiquitylated Tau fibrils, resulting in their efficient disaggregation. Aggregate clearance depends on the functional cooperation of VCP with heat shock 70 kDa protein (Hsp70) and the ubiquitin-proteasome machinery. While inhibition of VCP activity stabilizes large Tau aggregates, disaggregation by VCP generates seeding-active Tau species as byproduct. These findings identify VCP as a core component of the machinery for the removal of neurodegenerative disease aggregates and suggest that its activity can be associated with enhanced aggregate spreading in tauopathies.

Authors: Itika Saha, Patricia Yuste-Checa, Miguel Da Silva Padilha, Qiang Guo, Roman Körner, Hauke Holthusen, Victoria A Trinkaus, Irina Dudanova, Rubén Fernández-Busnadiego, Wolfgang Baumeister, David W Sanders, Saurabh Gautam, Marc I Diamond, F Ulrich Hartl, Mark S Hipp

Date Published: 2nd Feb 2023

Publication Type: Journal

Abstract (Expand)

The complexity of signaling events and cellular responses unfolding in neuronal, glial, and immune cells upon traumatic brain injury (TBI) constitutes an obstacle in elucidating pathophysiological links and targets for intervention. We use array phosphoproteomics in a murine mild blunt TBI to reconstruct the temporal dynamics of tyrosine-kinase signaling in TBI and then scrutinize the large-scale effects of perturbation of Met/HGFR, VEGFR1, and Btk signaling by small molecules. We show Met/HGFR as a selective modifier of early microglial response and that Met/HGFR blockade prevents the induction of microglial inflammatory mediators, of reactive microglia morphology, and TBI-associated responses in neurons and vasculature. Both acute and prolonged Met/HGFR inhibition ameliorate neuronal survival and motor recovery. Early elevation of HGF itself in the cerebrospinal fluid of TBI patients suggests that this mechanism has translational value in human subjects. Our findings identify Met/HGFR as a modulator of early neuroinflammation in TBI with promising translational potential.

Authors: Rida Rehman, Michael Miller, Sruthi Sankari Krishnamurthy, Jacob Kjell, Lobna Elsayed, Stefanie M Hauck, Florian Olde Heuvel, Alison Conquest, Akila Chandrasekar, Albert Ludolph, Tobias Boeckers, Medhanie A Mulaw, Maria Cristina Morganti-Kossmann, Aya Takeoka, Francesco Roselli, Magdalena Götz

Date Published: 27th Dec 2022

Publication Type: Journal

Abstract (Expand)

Amyloid-beta (Abeta) deposition is an initiating factor in Alzheimer's disease (AD). Microglia are the brain immune cells that surround and phagocytose Abeta plaques, but their phagocytic capacity declines in AD. This is in agreement with studies that associate AD risk loci with genes regulating the phagocytic function of immune cells. Immunotherapies are currently pursued as strategies against AD and there are increased efforts to understand the role of the immune system in ameliorating AD pathology. Here, we evaluated the effect of the Abeta targeting ACI-24 vaccine in reducing AD pathology in an amyloidosis mouse model. ACI-24 vaccination elicited a robust and sustained antibody response in APPPS1 mice with an accompanying reduction of Abeta plaque load, Abeta plaque-associated ApoE and dystrophic neurites as compared to non-vaccinated controls. Furthermore, an increased number of NLRP3-positive plaque-associated microglia was observed following ACI-24 vaccination. In contrast to this local microglial activation at Abeta plaques, we observed a more ramified morphology of Abeta plaque-distant microglia compared to non-vaccinated controls. Accordingly, bulk transcriptomic analysis revealed a trend towards the reduced expression of several disease-associated microglia (DAM) signatures that is in line with the reduced Abeta plaque load triggered by ACI-24 vaccination. Our study demonstrates that administration of the Abeta targeting vaccine ACI-24 reduces AD pathology, suggesting its use as a safe and cost-effective AD therapeutic intervention.

Authors: J. Rudan Njavro, M. Vukicevic, E. Fiorini, L. Dinkel, S. A. Muller, A. Berghofer, C. Bordier, S. Kozlov, A. Halle, K. Buschmann, A. Capell, C. Giudici, M. Willem, R. Feederle, S. F. Lichtenthaler, C. Babolin, P. Montanari, A. Pfeifer, M. Kosco-Vilbois, S. Tahirovic

Date Published: 24th Dec 2022

Publication Type: Journal

Abstract (Expand)

Spatial molecular profiling of complex tissues is essential to investigate cellular function in physiological and pathological states. However, methods for molecular analysis of large biological specimens imaged in 3D are lacking. Here, we present DISCO-MS, a technology that combines whole-organ/whole-organism clearing and imaging, deep-learning-based image analysis, robotic tissue extraction, and ultra-high-sensitivity mass spectrometry. DISCO-MS yielded proteome data indistinguishable from uncleared samples in both rodent and human tissues. We used DISCO-MS to investigate microglia activation along axonal tracts after brain injury and characterized early- and late-stage individual amyloid-beta plaques in a mouse model of Alzheimer's disease. DISCO-bot robotic sample extraction enabled us to study the regional heterogeneity of immune cells in intact mouse bodies and aortic plaques in a complete human heart. DISCO-MS enables unbiased proteome analysis of preclinical and clinical tissues after unbiased imaging of entire specimens in 3D, identifying diagnostic and therapeutic opportunities for complex diseases. VIDEO ABSTRACT.

Authors: H. S. Bhatia, A. D. Brunner, F. Ozturk, S. Kapoor, Z. Rong, H. Mai, M. Thielert, M. Ali, R. Al-Maskari, J. C. Paetzold, F. Kofler, M. I. Todorov, M. Molbay, Z. I. Kolabas, M. Negwer, L. Hoeher, H. Steinke, A. Dima, B. Gupta, D. Kaltenecker, O. S. Caliskan, D. Brandt, N. Krahmer, S. Muller, S. F. Lichtenthaler, F. Hellal, I. Bechmann, B. Menze, F. Theis, M. Mann, A. Erturk

Date Published: 22nd Dec 2022

Publication Type: Journal

Abstract (Expand)

Neuroinflammation after stroke is characterized by the activation of resident microglia and the invasion of circulating leukocytes into the brain. Although lymphocytes infiltrate the brain in small number, they have been consistently demonstrated to be the most potent leukocyte subpopulation contributing to secondary inflammatory brain injury. However, the exact mechanism of how this minimal number of lymphocytes can profoundly affect stroke outcome is still largely elusive. Here, using a mouse model for ischemic stroke, we demonstrated that early activation of microglia in response to stroke is differentially regulated by distinct T cell subpopulations - with T(H1) cells inducing a type I INF signaling in microglia and regulatory T cells (T(REG)) cells promoting microglial genes associated with chemotaxis. Acute treatment with engineered T cells overexpressing IL-10 administered into the cisterna magna after stroke induces a switch of microglial gene expression to a profile associated with pro-regenerative functions. Whereas microglia polarization by T cell subsets did not affect the acute development of the infarct volume, these findings substantiate the role of T cells in stroke by polarizing the microglial phenotype. Targeting T cell-microglia interactions can have direct translational relevance for further development of immune-targeted therapies for stroke and other neuroinflammatory conditions.

Authors: C. Benakis, A. Simats, S. Tritschler, S. Heindl, S. Besson-Girard, G. Llovera, K. Pinkham, A. Kolz, A. Ricci, F. J. Theis, S. Bittner, O. Gokce, A. Peters, A. Liesz

Date Published: 13th Dec 2022

Publication Type: Journal

Abstract (Expand)

Autophagy is responsible for clearance of an extensive portfolio of cargoes, which are sequestered into vesicles, called autophagosomes, and are delivered to lysosomes for degradation. The pathway is highly dynamic and responsive to several stress conditions. However, the phospholipid composition and protein contents of human autophagosomes under changing autophagy rates are elusive so far. Here, we introduce an antibody-based FACS-mediated approach for the isolation of native autophagic vesicles and ensured the quality of the preparations. Employing quantitative lipidomics, we analyze phospholipids present within human autophagic vesicles purified upon basal autophagy, starvation, and proteasome inhibition. Importantly, besides phosphoglycerides, we identify sphingomyelin within autophagic vesicles and show that the phospholipid composition is unaffected by the different conditions. Employing quantitative proteomics, we obtain cargo profiles of autophagic vesicles isolated upon the different treatment paradigms. Interestingly, starvation shows only subtle effects, while proteasome inhibition results in the enhanced presence of ubiquitin-proteasome pathway factors within autophagic vesicles. Thus, here we present a powerful method for the isolation of native autophagic vesicles, which enabled profound phospholipid and cargo analyses.

Authors: D. Schmitt, S. Bozkurt, P. Henning-Domres, H. Huesmann, S. Eimer, L. Bindila, C. Behrends, E. Boyle, F. Wilfling, G. Tascher, C. Munch, C. Behl, A. Kern

Date Published: 6th Dec 2022

Publication Type: Journal

Powered by
(v.1.15.0)
Copyright © 2008 - 2024 The University of Manchester and HITS gGmbH