Studies
What is a Study?Filters
CD4+ T cells orchestrate both humoral and cytotoxic immune responses. While it is known that CD4+ T cell proliferation relies on autophagy, direct identification of the autophagosomal cargo involved is still missing. Here, we created a transgenic mouse model, which, for the first time, enables us to directly map the proteinaceous content of autophagosomes in any primary cell by LC3 proximity labelling. IL-7Rα, a cytokine receptor mostly found in naïve and memory T cells, was reproducibly detected ...
The complexity of signaling events and cellular responses unfolding in neuronal, glial, and immune cells upon traumatic brain injury (TBI) constitutes an obstacle in elucidating pathophysiological links and targets for intervention. We use array phosphoproteomics in a murine mild blunt TBI to reconstruct the temporal dynamics of tyrosine-kinase signaling in TBI and then scrutinize the large-scale effects of perturbation of Met/HGFR, VEGFR1, and Btk signaling by small molecules. We show Met/HGFR ...
In the present study, we have demonstrated that extracellular vesicles (EVs) derived from cerebrospinal fluid (CSF) represent a promising source for the identification of a novel miRNA signatures in Parkinson's disease (PD). Using next‐generation small‐RNA sequencing, we present for the first time the complete and quantitative microRNAome of EVs isolated from human CSF of PD and age‐correlated controls (CTR). In parallel, we performed CSF proteomic profiling of overlapping patient cohorts, which ...
Despite numerous studies on fetal therapy for myelomeningoceles (MMC), the pathophysiology of this malformation remains poorly understood. This study aimed to analyze the biochemical profile and proteome of amniotic fluid (AF) supernatants from MMC fetuses to explore the prenatal pathophysiology. Biochemical analysis of 61 AF samples from MMC fetuses was compared with 45 healthy fetuses' samples. Proteome analysis was conducted in 18 MMC and 18 healthy singleton fetuses, and in 5 dichorionic ...
Ubiquilin-2 (UBQLN2) is a ubiquitin-binding protein that shuttles ubiquitinated proteins to proteasomal and autophagic degradation. UBQLN2 mutations are genetically linked to the neurodegenerative disorders amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD). However, it remains elusive how UBQLN2 mutations cause ALS/FTD. Here, we systematically examined proteomic and transcriptomic changes in patient-derived lymphoblasts and CRISPR/Cas9-engineered HeLa cells carrying ALS/FTD ...
Advancing MS-based proteomics toward clinical applications evolves around developing standardized start-to-finish and fit-for-purpose workflows for clinical specimens. Steps along the method design involve the determination and optimization of several bioanalytical parameters such as selectivity, sensitivity, accuracy, and precision. In a joint effort, eight proteomics laboratories belonging to the MSCoreSys initiative including the CLINSPECT-M, MSTARS, DIASyM, and SMART-CARE consortia performed ...
Amyotrophic lateral sclerosis (ALS) is a debilitating motor neuron disease and lacks effective disease-modifying treatments. This study utilizes a comprehensive multiomic approach to investigate the early and sex-specific molecular mechanisms underlying ALS. By analyzing the prefrontal cortex of 51 patients with sporadic ALS and 50 control subjects, alongside four transgenic mouse models (C9orf72-, SOD1-, TDP-43-, and FUS-ALS), we have uncovered significant molecular alterations associated with ...
Submitter: Aditi Methi
Investigation: Proteomics (Published)
Assays: Phosphoproteomics / Bottom-up proteomics (mouse), Shotgun proteomics (human, mouse)