Publications

What is a Publication?
32 Publications visible to you, out of a total of 32

Abstract (Expand)

The oligodendrocyte progenitors (OPCs) are at the front of the glial reaction to the traumatic brain injury. However, regulatory pathways steering the OPC reaction as well as the role of reactive OPCs remain largely unknown. Here, we compared a long-lasting, exacerbated reaction of OPCs to the adult zebrafish brain injury with a timely restricted OPC activation to identify the specific molecular mechanisms regulating OPC reactivity and their contribution to regeneration. We demonstrated that the influx of the cerebrospinal fluid into the brain parenchyma after injury simultaneously activates the toll-like receptor 2 (Tlr2) and the chemokine receptor 3 (Cxcr3) innate immunity pathways, leading to increased OPC proliferation and thereby exacerbated glial reactivity. These pathways were critical for long-lasting OPC accumulation even after the ablation of microglia and infiltrating monocytes. Importantly, interference with the Tlr1/2 and Cxcr3 pathways after injury alleviated reactive gliosis, increased new neuron recruitment, and improved tissue restoration.

Authors: Rosario Sanchez-Gonzalez, Christina Koupourtidou, Tjasa Lepko, Alessandro Zambusi, Klara Tereza Novoselc, Tamara Durovic, Sven Aschenbroich, Veronika Schwarz, Christopher T Breunig, Hans Straka, Hagen B Huttner, Martin Irmler, Johannes Beckers, Wolfgang Wurst, Andreas Zwergal, Tamas Schauer, Tobias Straub, Tim Czopka, Dietrich Trümbach, Magdalena Götz, Stefan H Stricker, Jovica Ninkovic

Date Published: 2nd Feb 2022

Publication Type: Journal

Abstract (Expand)

Parkinson's disease (PD) is the second most common neurodegenerative disorder whose prevalence is rapidly increasing worldwide. The molecular mechanisms underpinning the pathophysiology of sporadic PD remain incompletely understood. Therefore, causative therapies are still elusive. To obtain a more integrative view of disease-mediated alterations, we investigated the molecular landscape of PD in human post-mortem midbrains, a region that is highly affected during the disease process.

Authors: Lucas Caldi Gomes, Ana Galhoz, Gaurav Jain, Anna-Elisa Roser, Fabian Maass, Eleonora Carboni, Elisabeth Barski, Christof Lenz, Katja Lohmann, Christine Klein, Mathias Bähr, André Fischer, Michael P Menden, Paul Lingor

Date Published: 28th Jan 2022

Publication Type: Journal

Abstract (Expand)

Astrocytes regulate brain-wide functions and also show region-specific differences, but little is known about how general and region-specific functions are aligned at the single-cell level. To explore this, we isolated adult mouse diencephalic astrocytes by ACSA-2-mediated magnetic-activated cell sorting (MACS). Single-cell RNA-seq revealed 7 gene expression clusters of astrocytes, with 4 forming a supercluster. Within the supercluster, cells differed by gene expression related to ion homeostasis or metabolism, with the former sharing gene expression with other regions and the latter being restricted to specific regions. All clusters showed expression of proliferation-related genes, and proliferation of diencephalic astrocytes was confirmed by immunostaining. Clonal analysis demonstrated low level of astrogenesis in the adult diencephalon, but not in cerebral cortex grey matter. This led to the identification of Smad4 as a key regulator of diencephalic astrocyte in vivo proliferation and in vitro neurosphere formation. Thus, astrocytes show diverse gene expression states related to distinct functions with some subsets being more widespread while others are more regionally restricted. However, all share low-level proliferation revealing the novel concept of adult astrogenesis in the diencephalon.

Authors: Stefanie Ohlig, Solène Clavreul, Manja Thorwirth, Tatiana Simon-Ebert, Riccardo Bocchi, Sabine Ulbricht, Nirmal Kannayian, Moritz Rossner, Swetlana Sirko, Pawel Smialowski, Judith Fischer-Sternjak, Magdalena Götz

Date Published: 2nd Nov 2021

Publication Type: Journal

Abstract (Expand)

Astrocytes are a viable source for generating new neurons via direct conversion. However, little is known about the neurogenic cascades triggered in astrocytes from different regions of the CNS. Here, we examine the transcriptome induced by the proneural factors Ascl1 and Neurog2 in spinal cord-derived astrocytes in vitro. Each factor initially elicits different neurogenic programs that later converge to a V2 interneuron-like state. Intriguingly, patch sequencing (patch-seq) shows no overall correlation between functional properties and the transcriptome of the heterogenous induced neurons, except for K-channels. For example, some neurons with fully mature electrophysiological properties still express astrocyte genes, thus calling for careful molecular and functional analysis. Comparing the transcriptomes of spinal cord- and cerebral-cortex-derived astrocytes reveals profound differences, including developmental patterning cues maintained in vitro. These relate to the distinct neuronal identity elicited by Ascl1 and Neurog2 reflecting their developmental functions in subtype specification of the respective CNS region.

Authors: J Kempf, K Knelles, B A Hersbach, D Petrik, T Riedemann, V Bednarova, A Janjic, T Simon-Ebert, W Enard, P Smialowski, M Götz, G Masserdotti

Date Published: 20th Jul 2021

Publication Type: Journal

Abstract (Expand)

Multidimensional single-cell analyses of T cells have fueled the debate about whether there is extensive plasticity or 'mixed' priming of helper T cell subsets in vivo. Here, we developed an experimental framework to probe the idea that the site of priming in the systemic immune compartment is a determinant of helper T cell-induced immunopathology in remote organs. By site-specific in vivo labeling of antigen-specific T cells in inguinal (i) or gut draining mesenteric (m) lymph nodes, we show that i-T cells and m-T cells isolated from the inflamed central nervous system (CNS) in a model of multiple sclerosis (MS) are distinct. i-T cells were Cxcr6(+), and m-T cells expressed P2rx7. Notably, m-T cells infiltrated white matter, while i-T cells were also recruited to gray matter. Therefore, we propose that the definition of helper T cell subsets by their site of priming may guide an advanced understanding of helper T cell biology in health and disease.

Authors: M. Hiltensperger, E. Beltran, R. Kant, S. Tyystjarvi, G. Lepennetier, H. Dominguez Moreno, I. J. Bauer, S. Grassmann, S. Jarosch, K. Schober, V. R. Buchholz, S. Kenet, C. Gasperi, R. Ollinger, R. Rad, A. Muschaweckh, C. Sie, L. Aly, B. Knier, G. Garg, A. M. Afzali, L. A. Gerdes, T. Kumpfel, S. Franzenburg, N. Kawakami, B. Hemmer, D. H. Busch, T. Misgeld, K. Dornmair, T. Korn

Date Published: 9th Jun 2021

Publication Type: Journal

Abstract (Expand)

Aging results in gray and white matter degeneration, but the specific microglial responses are unknown. Using single-cell RNA sequencing from white and gray matter separately, we identified white matter-associated microglia (WAMs), which share parts of the disease-associated microglia (DAM) gene signature and are characterized by activation of genes implicated in phagocytic activity and lipid metabolism. WAMs depend on triggering receptor expressed on myeloid cells 2 (TREM2) signaling and are aging dependent. In the aged brain, WAMs form independent of apolipoprotein E (APOE), in contrast to mouse models of Alzheimer's disease, in which microglia with the WAM gene signature are generated prematurely and in an APOE-dependent pathway similar to DAMs. Within the white matter, microglia frequently cluster in nodules, where they are engaged in clearing degenerated myelin. Thus, WAMs may represent a potentially protective response required to clear degenerated myelin accumulating during white matter aging and disease.

Authors: S. Safaiyan, S. Besson-Girard, T. Kaya, L. Cantuti-Castelvetri, L. Liu, H. Ji, M. Schifferer, G. Gouna, F. Usifo, N. Kannaiyan, D. Fitzner, X. Xiang, M. J. Rossner, M. Brendel, O. Gokce, M. Simons

Date Published: 7th Apr 2021

Publication Type: Journal

Abstract (Expand)

In the present study, we have demonstrated that extracellular vesicles (EVs) derived from cerebrospinal fluid (CSF) represent a promising source for the identification of a novel miRNA signatures in Parkinson's disease (PD). Using next‐generation small‐RNA sequencing, we present for the first time the complete and quantitative microRNAome of EVs isolated from human CSF of PD and age‐correlated controls (CTR). In parallel, we performed CSF proteomic profiling of overlapping patient cohorts, which revealed the deregulation of disease‐relevant pathways similar to the ones obtained with the parallel miRNA analyses, supporting the results for the identified signature.

Authors: Lucas Caldi Gomes, Anna-Elisa Roser, Gaurav Jain, Tonatiuh Pena Centeno, Fabian Maass, Lukas Schilde, Caroline May, Anja Schneider, Mathias Bähr, Katrin Marcus, André Fischer, Paul Lingor

Date Published: 5th Apr 2021

Publication Type: Journal

Powered by
(v.1.15.0)
Copyright © 2008 - 2024 The University of Manchester and HITS gGmbH