Publications

What is a Publication?
32 Publications visible to you, out of a total of 32

Abstract (Expand)

Progranulin (PGRN) haploinsufficiency is a major risk factor for frontotemporal lobar degeneration with TAR DNA-binding protein 43 (TDP-43) pathology (FTLD-<i>GRN</i>). Multiple therapeutic strategies are in clinical development to restore PGRN in the CNS, including gene therapy. However, a limitation of current gene therapy approaches aimed to alleviate FTLD-associated pathologies may be their inefficient brain exposure and biodistribution. We therefore developed an adeno-associated virus (AAV) targeting the liver (L) to achieve sustained peripheral expression of a transferrin receptor (TfR) binding, brain-penetrant (b) PGRN variant [AAV(L):bPGRN] in two mouse models of FTLD-<i>GRN</i>, namely, <i>Grn</i> knockout and <i>GrnxTmem106b</i> double knockout mice. This therapeutic strategy avoids potential safety and biodistribution issues of CNS-administered AAVs and maintains sustained concentrations of PGRN in the brain after a single dose. AAV(L):bPGRN treatment reduced several FTLD-<i>GRN</i>-associated pathologies including severe motor function deficits, aberrant TDP-43 phosphorylation, dysfunctional protein degradation, lipid metabolism, gliosis, and neurodegeneration in the brain. The potential translatability of our findings was tested in an in vitro model using cocultured human induced pluripotent stem cell (hiPSC)-derived microglia lacking PGRN and TMEM106B and wild-type hiPSC-derived neurons. As in mice, aberrant TDP-43, lysosomal dysfunction, and neuronal loss were ameliorated after treatment with exogenous TfR-binding protein transport vehicle fused to PGRN (PTV:PGRN). Together, our studies suggest that peripherally administered brain-penetrant PGRN replacement strategies ameliorate FTLD-<i>GRN</i> relevant phenotypes including TDP-43 pathology, neurodegeneration, and behavioral deficits. Our data provide preclinical proof of concept for the use of this AAV platform for treatment of FTLD-<i>GRN</i> and potentially other CNS disorders.

Authors: Marvin Reich, Matthew J Simon, Beate Polke, Iñaki Paris, Georg Werner, Christian Schrader, Lena Spieth, Sonnet S Davis, Sophie Robinson, Gabrielly Lunkes de Melo, Lennart Schlaphoff, Katrin Buschmann, Stefan Berghoff, Todd Logan, Brigitte Nuscher, Lis de Weerd, Dieter Edbauer, Mikael Simons, Jung H Suh, Thomas Sandmann, Mihalis S Kariolis, Sarah L DeVos, Joseph W Lewcock, Dominik Paquet, Anja Capell, Gilbert Di Paolo, Christian Haass

Date Published: 5th Jun 2024

Publication Type: Journal

Abstract (Expand)

Mitochondria account for essential cellular pathways, from ATP production to nucleotide metabolism, and their deficits lead to neurological disorders and contribute to the onset of age-related diseases. Direct neuronal reprogramming aims at replacing neurons lost in such conditions, but very little is known about the impact of mitochondrial dysfunction on the direct reprogramming of human cells. Here, we explore the effects of mitochondrial dysfunction on the neuronal reprogramming of induced pluripotent stem cell (iPSC)-derived astrocytes carrying mutations in the NDUFS4 gene, important for Complex I and associated with Leigh syndrome. This led to the identification of the unfolded protein response as a major hurdle in the direct neuronal conversion of not only astrocytes and fibroblasts from patients but also control human astrocytes and fibroblasts. Its transient inhibition potently improves reprogramming by influencing the mitochondria-endoplasmic-reticulum-stress-mediated pathways. Taken together, disease modeling using patient cells unraveled novel general hurdles and ways to overcome these in human astrocyte-to-neuron reprogramming.

Authors: G. Sonsalla, A. B. Malpartida, T. Riedemann, M. Gusic, E. Rusha, G. Bulli, S. Najas, A. Janjic, B. A. Hersbach, P. Smialowski, M. Drukker, W. Enard, J. H. M. Prehn, H. Prokisch, M. Gotz, G. Masserdotti

Date Published: 3rd Apr 2024

Publication Type: Journal

Abstract (Expand)

Traumatic brain injury leads to a highly orchestrated immune- and glial cell response partially responsible for long-lasting disability and the development of secondary neurodegenerative diseases. A holistic understanding of the mechanisms controlling the responses of specific cell types and their crosstalk is required to develop an efficient strategy for better regeneration. Here, we combine spatial and single-cell transcriptomics to chart the transcriptomic signature of the injured male murine cerebral cortex, and identify specific states of different glial cells contributing to this signature. Interestingly, distinct glial cells share a large fraction of injury-regulated genes, including inflammatory programs downstream of the innate immune-associated pathways Cxcr3 and Tlr1/2. Systemic manipulation of these pathways decreases the reactivity state of glial cells associated with poor regeneration. The functional relevance of the discovered shared signature of glial cells highlights the importance of our resource enabling comprehensive analysis of early events after brain injury.

Authors: Christina Koupourtidou, Veronika Schwarz, Hananeh Aliee, Simon Frerich, Judith Fischer-Sternjak, Riccardo Bocchi, Tatiana Simon-Ebert, Xianshu Bai, Swetlana Sirko, Frank Kirchhoff, Martin Dichgans, Magdalena Götz, Fabian J Theis, Jovica Ninkovic

Date Published: 3rd Apr 2024

Publication Type: Journal

Abstract (Expand)

Oxytocin-expressing paraventricular hypothalamic neurons (PVN<sup>OT</sup> neurons) integrate afferent signals from the gut, including cholecystokinin (CCK), to adjust whole-body energy homeostasis. However, the molecular underpinnings by which PVN<sup>OT</sup> neurons orchestrate gut-to-brain feeding control remain unclear. Here, we show that mice undergoing selective ablation of PVN<sup>OT</sup> neurons fail to reduce food intake in response to CCK and develop hyperphagic obesity on a chow diet. Notably, exposing wild-type mice to a high-fat/high-sugar (HFHS) diet recapitulates this insensitivity toward CCK, which is linked to diet-induced transcriptional and electrophysiological aberrations specifically in PVN<sup>OT</sup> neurons. Restoring OT pathways in diet-induced obese (DIO) mice via chemogenetics or polypharmacology sufficiently re-establishes CCK's anorexigenic effects. Last, by single-cell profiling, we identify a specialized PVN<sup>OT</sup> neuronal subpopulation with increased κ-opioid signaling under an HFHS diet, which restrains their CCK-evoked activation. In sum, we document a (patho)mechanism by which PVN<sup>OT</sup> signaling uncouples a gut-brain satiation pathway under obesogenic conditions.

Authors: Tim Gruber, Franziska Lechner, Cahuê Murat, Raian E Contreras, Eva Sanchez-Quant, Viktorian Miok, Konstantinos Makris, Ophélia Le Thuc, Ismael González-García, Elena García-Clave, Ferdinand Althammer, Quirin Krabichler, Lisa M DeCamp, Russell G Jones, Dominik Lutter, Rhiannan H Williams, Paul T Pfluger, Timo D Müller, Stephen C Woods, John Andrew Pospisilik, Celia P Martinez-Jimenez, Matthias H Tschöp, Valery Grinevich, Cristina Garcia-Caceres

Date Published: 31st Oct 2023

Publication Type: Journal

Abstract (Expand)

Axon degeneration and functional decline in myelin diseases are often attributed to loss of myelin but their relation is not fully understood. Perturbed myelinating glia can instigate chronic neuroinflammation and contribute to demyelination and axonal damage. Here we study mice with distinct defects in the proteolipid protein 1 gene that develop axonal damage which is driven by cytotoxic T cells targeting myelinating oligodendrocytes. We show that persistent ensheathment with perturbed myelin poses a risk for axon degeneration, neuron loss, and behavioral decline. We demonstrate that CD8(+) T cell-driven axonal damage is less likely to progress towards degeneration when axons are efficiently demyelinated by activated microglia. Mechanistically, we show that cytotoxic T cell effector molecules induce cytoskeletal alterations within myelinating glia and aberrant actomyosin constriction of axons at paranodal domains. Our study identifies detrimental axon-glia-immune interactions which promote neurodegeneration and possible therapeutic targets for disorders associated with myelin defects and neuroinflammation.

Authors: J. Groh, T. Abdelwahab, Y. Kattimani, M. Horner, S. Loserth, V. Gudi, R. Adalbert, F. Imdahl, A. E. Saliba, M. Coleman, M. Stangel, M. Simons, R. Martini

Date Published: 30th Oct 2023

Publication Type: Journal

Abstract (Expand)

Multiple sclerosis (MS) involves the infiltration of autoreactive T cells into the CNS, yet we lack a comprehensive understanding of the signaling pathways that regulate this process. Here, we conducted a genome-wide in vivo CRISPR screen in a rat MS model and identified 5 essential brakes and 18 essential facilitators of T cell migration to the CNS. While the transcription factor ETS1 limits entry to the CNS by controlling T cell responsiveness, three functional modules, centered around the adhesion molecule alpha4-integrin, the chemokine receptor CXCR3 and the GRK2 kinase, are required for CNS migration of autoreactive CD4(+) T cells. Single-cell analysis of T cells from individuals with MS confirmed that the expression of these essential regulators correlates with the propensity of CD4(+) T cells to reach the CNS. Our data thus reveal key regulators of the fundamental step in the induction of MS lesions.

Authors: A. Kendirli, C. de la Rosa, K. F. Lammle, K. Eglseer, I. J. Bauer, V. Kavaka, S. Winklmeier, L. Zhuo, C. Wichmann, L. A. Gerdes, T. Kumpfel, K. Dornmair, E. Beltran, M. Kerschensteiner, N. Kawakami

Date Published: 4th Oct 2023

Publication Type: Journal

Abstract (Expand)

The bone marrow in the skull is important for shaping immune responses in the brain and meninges, but its molecular makeup among bones and relevance in human diseases remain unclear. Here, we show that the mouse skull has the most distinct transcriptomic profile compared with other bones in states of health and injury, characterized by a late-stage neutrophil phenotype. In humans, proteome analysis reveals that the skull marrow is the most distinct, with differentially expressed neutrophil-related pathways and a unique synaptic protein signature. 3D imaging demonstrates the structural and cellular details of human skull-meninges connections (SMCs) compared with veins. Last, using translocator protein positron emission tomography (TSPO-PET) imaging, we show that the skull bone marrow reflects inflammatory brain responses with a disease-specific spatial distribution in patients with various neurological disorders. The unique molecular profile and anatomical and functional connections of the skull show its potential as a site for diagnosing, monitoring, and treating brain diseases.

Authors: Zeynep Ilgin Kolabas, Louis B Kuemmerle, Robert Perneczky, Benjamin Förstera, Selin Ulukaya, Mayar Ali, Saketh Kapoor, Laura M Bartos, Maren Büttner, Ozum Sehnaz Caliskan, Zhouyi Rong, Hongcheng Mai, Luciano Höher, Denise Jeridi, Muge Molbay, Igor Khalin, Ioannis K Deligiannis, Moritz Negwer, Kenny Roberts, Alba Simats, Olga Carofiglio, Mihail I Todorov, Izabela Horvath, Furkan Ozturk, Selina Hummel, Gloria Biechele, Artem Zatcepin, Marcus Unterrainer, Johannes Gnörich, Jay Roodselaar, Joshua Shrouder, Pardis Khosravani, Benjamin Tast, Lisa Richter, Laura Díaz-Marugán, Doris Kaltenecker, Laurin Lux, Ying Chen, Shan Zhao, Boris-Stephan Rauchmann, Michael Sterr, Ines Kunze, Karen Stanic, Vanessa W Y Kan, Simon Besson-Girard, Sabrina Katzdobler, Carla Palleis, Julia Schädler, Johannes C Paetzold, Sabine Liebscher, Anja E Hauser, Özgün Gökçe, Heiko Lickert, Hanno Steinke, Corinne Benakis, Christian Braun, Celia P Martinez-Jimenez, Katharina Buerger, Nathalie L Albert, Günter Höglinger, Johannes Levin, Christian Haass, Anna Kopczak, Martin Dichgans, Joachim Havla, Tania Kümpfel, Martin Kerschensteiner, Martina Schifferer, Mikael Simons, Arthur Liesz, Natalie Krahmer, Omer A Bayraktar, Nicolai Franzmeier, Nikolaus Plesnila, Suheda Erener, Victor G Puelles, Claire Delbridge, Harsharan Singh Bhatia, Farida Hellal, Markus Elsner, Ingo Bechmann, Benjamin Ondruschka, Matthias Brendel, Fabian J Theis, Ali Ertürk

Date Published: 17th Aug 2023

Publication Type: Journal

Powered by
(v.1.15.0)
Copyright © 2008 - 2024 The University of Manchester and HITS gGmbH