Studies

What is a Study?
50 Studies visible to you, out of a total of 90

The centrosome acts as the cell’s microtubule organizing center, supporting cell division and the extension of cilia and neurites. Newly born neurons require the microtubule organizing activity of centrosomes to migrate away from their birthplace at the ventricle. O’Neill et al. analyzed the centrosome proteome of human induced pluripotent stem cell–derived neural stem cells and neurons. The neural centrosome proteome contains a variety of RNA-binding/modifying proteins, including an RNA-splicing ...

The centrosome provides an intracellular anchor for the cytoskeleton, regulating cell division, cell migration, and cilia formation. We used spatial proteomics to elucidate protein interaction networks at the centrosome of human induced pluripotent stem cell-derived neural stem cells (NSCs) and neurons. Centrosome-associated proteins were largely cell type-specific, with protein hubs involved in RNA dynamics. Analysis of neurodevelopmental disease cohorts identified a significant overrepresentation ...

Clusterin (apolipoprotein J), a conserved glycoprotein abundant in blood and cerebrospinal fluid, functions as a molecular chaperone and apolipoprotein. Dysregulation of clusterin is linked to late-onset Alzheimer disease. Despite its prominent role in extracellular proteostasis, the mechanism of clusterin function remained unclear. Here, we present crystal structures of human clusterin, revealing a discontinuous three-domain architecture. Structure-based mutational analysis demonstrated that two ...

Autophagy deficiency in fed conditions leads to the formation of protein inclusions highlighting the contribution of this lysosomal delivery route to cellular proteostasis. Selective autophagy pathways exist that clear accumulated and aggregated ubiquitinated proteins. Receptors for this type of autophagy (aggrephagy) include p62, NBR1, TOLLIP, and OPTN, which possess LC3-interacting regions and ubiquitin-binding domains (UBDs), thus working as a bridge between LC3/GABARAP proteins and ubiquitinated ...

Amyloid-like aggregates of the microtubule-associated protein Tau are associated with several neurodegenerative disorders including Alzheimer's disease. The existence of cellular machinery for the removal of such aggregates has remained unclear, as specialized disaggregase chaperones are thought to be absent in mammalian cells. Here we show in cell culture and in neurons that the hexameric ATPase valosin-containing protein (VCP) is recruited to ubiquitylated Tau fibrils, resulting in their efficient ...

The cell surface receptor TREM2 is a key genetic risk factor and drug target in Alzheimer's disease (AD). In the brain, TREM2 is expressed in microglia, where it undergoes proteolytic cleavage, linked to AD risk, but the responsible protease in microglia is still unknown. Another microglial-expressed AD risk factor is catalytically inactive rhomboid 2 (iRhom2, RHBDF2), which binds to and acts as a non-catalytic subunit of the metalloprotease ADAM17. A potential role in TREM2 proteolysis is not ...

TMF1-regulated nuclear protein 1 (Trnp1) has been shown to exert potent roles in neural development affecting neural stem cell self-renewal and brain folding, but its molecular function in the nucleus is still unknown. Here, we show that Trnp1 is a low complexity protein with the capacity to phase separate. Trnp1 interacts with factors located in several nuclear membrane-less organelles, the nucleolus, nuclear speckles, and condensed chromatin. Importantly, Trnp1 co-regulates the architecture and ...

Powered by
(v.1.15.0)
Copyright © 2008 - 2024 The University of Manchester and HITS gGmbH