Quantitative mass spectrometry has transformed proteomics by allowing the simultaneous quantification of thousands of proteins. To boost statistical power, it is necessary to increase sample sizes by combining patient-derived data from various institutions. However, this practice raises significant privacy concerns. We created a DIA-LFQ dataset containing 118 samples generated from Escherichia coli MG1655 (DSM 18039) cultures and distributed them to five independent proteomics centers. This distributed data were used as a proof of concept to introduce FedProt - the first privacy-preserving tool for collaborative differential protein abundance analysis of distributed data.
Export PNG
Creators and SubmitterViews: 7
Created: 26th Nov 2025 at 15:01
TagsThis item has not yet been tagged.
AttributionsNone
Version History
Version 1 (earliest) Created 26th Nov 2025 at 15:01 by Aditi Methi
No revision comments
Related items
Projects: SyNergy: Published Datasets, SyNergy: Unpublished Datasets
Institutions: LMU Klinikum
Research Data Manager
Neurological diseases are on the rise – and as societies age, they affect an ever-increasing number of people, not only in Europe, but worldwide.
The Munich Cluster for Systems Neurology (SyNergy) investigates how complex neurological diseases such as Alzheimer's disease, stroke, and multiple sclerosis develop. Even though these diseases differ in their clinical manifestations, overlapping mechanisms are involved in their development. For example, the immune system gets activated in dementia, ...
Projects: SyNergy: Published Datasets, SyNergy: Unpublished Datasets
Web page: https://www.synergy-munich.de
This project serves as a centralized repository for omics datasets published by research groups within the SyNergy Cluster. It encompasses investigations such as proteomics and transcriptomics, which are further divided into individual studies led by SyNergy members. Each study is linked to relevant publications, assays and data files (with links to external repositories).
To explore investigations and their associated studies in more detail, please visit the 'Related items' tab on the Project ...
Programme: Munich Cluster for Systems Neurology (SyNergy)
Public web page: Not specified
Submitter: Rainer Malik
Studies: A TBK1 variant causes autophagolysosomal and motoneuron pathology withou..., A ubiquitin-specific, proximity-based labeling approach for the identifi..., ACSL3 is a novel GABARAPL2 interactor that links ufmylation and lipid dr..., ADAM10-Mediated Ectodomain Shedding Is an Essential Driver of Podocyte D..., ALS-linked loss of Cyclin-F function affects HSP90, AMPK, a Regulator of Metabolism and Autophagy, Is Activated by Lysosomal..., ATG4 family proteins drive phagophore growth independently of the LC3/GA..., An optimized quantitative proteomics method establishes the cell type-re..., Autophagosomal Content Profiling Reveals an LC3C-Dependent Piecemeal Mit..., Autophagosome content profiling using proximity biotinylation proteomics..., Autophagy acts through TRAF3 and RELB to regulate gene expression via an..., Basic Fibroblast Growth Factor 2-Induced Proteome Changes Endorse Lewy B..., Beneficial Effect of ACI-24 Vaccination on Aβ Plaque Pathology and Micro..., Brain injury environment critically influences the connectivity of trans..., C9orf72 protein quality control by UBR5-mediated heterotypic ubiquitin c..., CRISPR-Mediated Induction of Neuron-Enriched Mitochondrial Proteins Boos..., Cell-type-specific profiling of brain mitochondria reveals functional an..., Cellular depletion of major cathepsin proteases reveals their concerted ..., Deciphering sources of PET signals in the tumor microenvironment of glio..., Defining the Adult Neural Stem Cell Niche Proteome Identifies Key Regula..., Development of a Proteomic Workflow for the Identification of Heparan Su..., Distinct molecular profiles of skull bone marrow in health and neurologi..., Early intervention anti-Aβ immunotherapy attenuates microglial activatio..., Excessive local host-graft connectivity in aging and amyloid-loaded brain, Experimental evidence for temporal uncoupling of brain Aβ deposition and..., Fibrillar Aβ triggers microglial proteome alterations and dysfunction in..., Filling the Gaps – A Call for Comprehensive Analysis of Extracellular Ma..., IKKβ binds NLRP3 providing a shortcut to inflammasome activation for rap..., Identification and validation of a tear fluid-derived protein biomarker ..., Injury-specific factors in the cerebrospinal fluid regulate astrocyte pl..., Lipid and protein content profiling of isolated native autophagic vesicles, Loss of CLN3 in microglia leads to impaired lipid metabolism and myelin ..., Loss of NPC1 enhances phagocytic uptake and impairs lipid trafficking in..., Lysosomal damage sensing and lysophagy initiation by SPG20-ITCH, Lysosomal targeting of the ABC transporter TAPL is determined by membran..., Mapping autophagosome contents identifies interleukin-7 receptor-alpha a..., Met/HGFR triggers detrimental reactive microglia in TBI, MicroRNAs from extracellular vesicles as a signature for Parkinson's dis..., Molecular insights into myelomeningocele via proteomic analysis of amnio..., Multi-omics profiling identifies a deregulated FUS-MAP1B axis in ALS/FTD..., Multicenter Longitudinal Quality Assessment of MS-Based Proteomics in Pl..., Multiomic ALS signatures highlight subclusters and sex differences sugge..., Neuronal differentiation of LUHMES cells induces substantial changes of ..., Nonvesicular lipid transfer drives myelin growth in the central nervous ..., NrCAM is a marker for substrate-selective activation of ADAM10 in Alzhei..., Privacy-preserving multicenter differential protein abundance analysis w..., Pro-inflammatory activation following demyelination is required for myel..., Proteomic Characterization of Ubiquitin Carboxyl-Terminal Hydrolase 19 D..., Proteomic and lipidomic profiling of demyelinating lesions identifies fa..., Proteomic profiling in cerebral amyloid angiopathy reveals an overlap wi..., Proteomics of mouse brain endothelium uncovers dysregulation of vesicula..., Rational correction of pathogenic conformational defects in HTRA1, Reactivated endogenous retroviruses promote protein aggregate spreading, Signal peptide peptidase-like 2c impairs vesicular transport and cleaves..., Signatures of glial activity can be detected in the CSF proteome, Soluble VCAM-1 May Serve as a Pharmacodynamic CSF Marker to Monitor BACE..., Spatial centrosome proteome of human neural cells uncovers disease-relev..., Spatial proteomics in three-dimensional intact specimens, Spatial proteomics reveals secretory pathway disturbances caused by neur..., Structural analyses define the molecular basis of clusterin chaperone fu..., Systematically defining selective autophagy receptor-specific cargo usin..., Targeting the TCA cycle can ameliorate widespread axonal energy deficien..., The AAA+ chaperone VCP disaggregates Tau fibrils and generates aggregate..., The AAA+ chaperone VCP disaggregates Tau fibrils and generates aggregate..., The Alzheimer's disease-linked protease BACE1 modulates neuronal IL-6 si..., The Alzheimer's disease-linked protease BACE2 cleaves VEGFR3 and modulat..., The COP9 signalosome reduces neuroinflammation and attenuates ischemic n..., The Hippo network kinase STK38 contributes to protein homeostasis by inh..., The intramembrane protease SPPL2c promotes male germ cell development by..., The late-onset Alzheimer's disease risk factor RHBDF2 is a modifier of m..., The pseudoprotease iRhom1 controls ectodomain shedding of membrane prote..., The tetraspanin Tspan15 is an essential subunit of an ADAM10 scissor com..., The ubiquitin-conjugating enzyme UBE2QL1 coordinates lysophagy in respon..., Trnp1 organizes diverse nuclear membrane-less compartments in neural ste..., Ubiquitin profiling of lysophagy identifies actin stabilizer CNN2 as a t...
Assays: Affinity purification coupled with mass spectrometry proteomics (human), Affinity purification coupled with mass spectrometry proteomics (human), Affinity purification coupled with mass spectrometry proteomics (human), Affinity purification coupled with mass spectrometry proteomics (human), Affinity purification coupled with mass spectrometry proteomics (human), Affinity purification coupled with mass spectrometry proteomics (human), Affinity purification coupled with mass spectrometry proteomics (human), Affinity purification coupled with mass spectrometry proteomics (human), Affinity purification coupled with mass spectrometry proteomics (human), Bottom-up proteomics (E. coli, human), Bottom-up proteomics (human), Bottom-up proteomics (human), Bottom-up proteomics (human), Bottom-up proteomics (human), Bottom-up proteomics (human), Bottom-up proteomics (macaque), Bottom-up proteomics (mouse), Bottom-up proteomics (mouse), Bottom-up proteomics (mouse), Bottom-up proteomics (mouse), Bottom-up proteomics (mouse), Bottom-up proteomics (mouse), Gel-based experiment (human), Phosphoproteomics / Bottom-up proteomics (mouse), Proximity-proteomics-based autophagosome content profiling (human), SWATH MS (human), SWATH MS (human, mouse), SWATH MS (mouse), Shotgun proteomics (human), Shotgun proteomics (human), Shotgun proteomics (human), Shotgun proteomics (human), Shotgun proteomics (human), Shotgun proteomics (human), Shotgun proteomics (human), Shotgun proteomics (human), Shotgun proteomics (human), Shotgun proteomics (human), Shotgun proteomics (human), Shotgun proteomics (human), Shotgun proteomics (human), Shotgun proteomics (human), Shotgun proteomics (human), Shotgun proteomics (human), Shotgun proteomics (human), Shotgun proteomics (human, mouse), Shotgun proteomics (human, mouse), Shotgun proteomics (human, mouse), Shotgun proteomics (human, mouse), Shotgun proteomics (macaque), Shotgun proteomics (mouse), Shotgun proteomics (mouse), Shotgun proteomics (mouse), Shotgun proteomics (mouse), Shotgun proteomics (mouse), Shotgun proteomics (mouse), Shotgun proteomics (mouse), Shotgun proteomics (mouse), Shotgun proteomics (mouse), Shotgun proteomics (mouse), Shotgun proteomics (mouse), Shotgun proteomics (mouse), Shotgun proteomics (mouse), Shotgun proteomics (mouse), Shotgun proteomics (mouse), Shotgun proteomics (mouse), Shotgun proteomics (mouse), Shotgun proteomics (mouse), Shotgun proteomics (mouse), Shotgun proteomics (mouse), Shotgun proteomics (mouse), Shotgun proteomics (mouse), Shotgun proteomics (mouse), Shotgun proteomics (mouse), Shotgun proteomics (mouse), Shotgun proteomics (rat), Untargeted Proteomics (mouse)
Snapshots: Snapshot 1
Quantitative mass spectrometry has revolutionized proteomics by enabling simultaneous quantification of thousands of proteins. Pooling patient-derived data from multiple institutions enhances statistical power but raises serious privacy concerns. Here we introduce FedProt, the first privacy-preserving tool for collaborative differential protein abundance analysis of distributed data, which utilizes federated learning and additive secret sharing. In the absence of a multicenter patient-derived ...
Submitter: Aditi Methi
Investigation: Proteomics (Published)
Snapshots: No snapshots
Submitter: Aditi Methi
Assay type: Proteomics
Technology type: Mass Spectrometry
Investigation: Proteomics (Published)
Organisms: Escherichia coli, Homo sapiens
SOPs: No SOPs
Data files: Multi-center study of E.coli colonies as a proo..., Ring study of patients suffering from focal seg...
Snapshots: No snapshots
External Link
Download